The yaw bearing is the most crucial and cost intensive component of a yaw system found on modern horizontal axis . The yaw bearing must cope with enormous static and dynamic Structural load and torque during the wind turbine operation, and provide smooth rotation characteristics for the orientation of the nacelle under all weather conditions. It has also to be corrosion and wear resistant and extremely long lasting. It should last for the service life of the wind turbine) while being cost effective.
These gliding bearings consisted of multiple gliding blocks fixed on the windmill tower structure. These blocks maintained sliding contact with a gliding ring on the nacelle. The gliding blocks were wooden cube-like pieces with gliding surface covered with animal fat, or even lined with copper (or brass) sheet as a friction reduction means. These wooden blocks were fixed in wooden slots, carved in the wooden bearing substructure, by means of nails or wedges and were carefully leveled to create a flat surface where the nacelle gliding ring could glide. The gliding blocks, despite the lubrication would wear quite often and would have to be exchanged. This operation was relatively simple due to the wedge-based connection between substructure and gliding blocks. The gliding blocks were further locked via movable locking devices which, in a different form, remain as a technical solution in modern gliding yaw bearings.
The gliding ring of the windmill nacelle was made from multiple wooden parts and, despite the old construction techniques, was usually quite level, allowing the nacelle to rotate smoothly around the tower axis.Molenbouw, A. Sipman, Zutphen, 2002,
The hybrid yaw bearing system combines the solutions old windmills used. This system comprises multiple removable radial gliding pads in combination with an axial roller bearing.
Some manufacturers use a plurality of smaller yaw drives (usually six) to facilitate easy replacement. Such a configuration with plurality of yaw drives often offers the possibility of active yaw braking using differential torque from the yaw drives. In this case half of the yaw drives apply a small amount of torque for clockwise rotation and the other half apply torque in the opposite direction and then activate the internal magnetic brakes of the electric motor. In this way the pinion-gear rim backlash is eliminated and the nacelle is fixed in place.
Principally, the simplest way to accomplish the yaw bearing tasks with gliding elements is with two gliding planes for the axial loads (top and bottom) and a radial gliding surface for the radial loads. Consequently, the gliding yaw bearing comprises three general surfaces covered with multiple gliding pads. These gliding pads come in sliding contact with a steel disk, which is usually equipped with gear teeth to form a gliding-disk/gear-rim. The teeth may be located at the inner or the outer cylindrical face of the disk, while the arrangement of the gliding pads and their exact number and location vary strongly among the existing designs. To assemble the gliding yaw bearings, their cages split in several segments that are assembled together during wind turbine installation or manufacturing.
In its simplest form, the gliding yaw bearing uses pads (usually made out of polymers) distributed around the three contact surfaces to provide a proper guiding system for the radial and axial movement with relatively low friction coefficient. Such systems are economical and very robust but do not allow individual adjustment of the axial and radial gliding elements. This function importantly minimizes the axial and radial "play" of the gliding bearing due to manufacturing tolerances as well as due to wear of the gliding pads during operation.
To solve this problem, yaw systems incorporate pre-tensioned gliding bearings. These bearings have gliding pads that are pressed via pressure elements against the gliding disk to stabilize the nacelle against undesirable movement. The pressure elements can be simple steel springs, pneumatic, or hydraulic pre-tension elements, etc. The use of pneumatic or hydraulic pre-tension elements allows active control of the yaw bearing pre-tension, which provides yaw brake function.
The only remaining issue is the replacement of the gliding elements of the gliding yaw bearing surface, which is not segmented. This is usually the top axial surface of the gliding bearing, which constantly supports the weight of the whole nacelle-rotor assembly. For the gliding elements of this gliding surface to be replaced, the nacelle-rotor assembly must be lifted by an external crane. An alternative solution to this problem is the use of mechanical or hydraulic jacks able to partially or fully lift the nacelle-rotor assembly while the gliding yaw bearing is still in place. In this way and by providing a small clearance between the gliding elements and the gliding disk, it is possible to exchange the sliding elements without dismantling the gliding yaw bearing.
Types
Roller yaw bearing
Gliding yaw bearing
Wear and lubrication
Maintenance and repair
Bearing Adjustment
See also
Further reading
|
|